Hierarchical Bayesian Neural Network for Gene Expression Temporal Patterns

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Bayesian neural network for gene expression temporal patterns.

There are several important issues to be addressed for gene expression temporal patterns' analysis: first, the correlation structure of multidimensional temporal data; second, the numerous sources of variations with existing high level noise; and last, gene expression mostly involves heterogeneous multiple dynamic patterns. We propose a Hierarchical Bayesian Neural Network model to account for ...

متن کامل

A hierarchical unsupervised growing neural network for clustering gene expression patterns

MOTIVATION We describe a new approach to the analysis of gene expression data coming from DNA array experiments, using an unsupervised neural network. DNA array technologies allow monitoring thousands of genes rapidly and efficiently. One of the interests of these studies is the search for correlated gene expression patterns, and this is usually achieved by clustering them. The Self-Organising ...

متن کامل

Network-based comparison of temporal gene expression patterns

MOTIVATION In the pursuits of mechanistic understanding of cell differentiation, it is often necessary to compare multiple differentiation processes triggered by different external stimuli and internal perturbations. Available methods for comparing temporal gene expression patterns are limited to a gene-by-gene approach, which ignores co-expression information and thus is sensitive to measureme...

متن کامل

Bayesian Hierarchical Models for Serial Analysis of Gene Expression

In the Serial Analysis of Gene Expression (SAGE) analysis, the statistical procedures have been performed after aggregation of observations from the various libraries for the same class. Most studies have not accounted for the within-class variability. The identification of the differentially expressed genes based on the class separation has not been easy because of heteroscedasticity of librar...

متن کامل

Bayesian hierarchical error model for analysis of gene expression data

MOTIVATION Analysis of genome-wide microarray data requires the estimation of a large number of genetic parameters for individual genes and their interaction expression patterns under multiple biological conditions. The sources of microarray error variability comprises various biological and experimental factors, such as biological and individual replication, sample preparation, hybridization a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Applications in Genetics and Molecular Biology

سال: 2004

ISSN: 1544-6115

DOI: 10.2202/1544-6115.1038